Topics in the November 2013 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2013-N-2:

- Introduction to Chemical Energetics
- Solutions
- Acids and Bases

2013-N-3:

- Introduction to Chemical Energetics
- Solubility

2013-N-4:

• Gas Laws

2013-N-5:

Chemical Equilibrium

2013-N-6:

- Introduction to Chemical Energetics
- Solutions

2013-N-7:

- Chemical Equilibrium
- Introduction to Chemical Energetics

2013-N-8:

- Introduction to Chemical Energetics
- Chemical Equilibrium

2013-N-9:

- Radiochemistry
- Acids and Bases

2013-N-10:

• Complexes

2013-N-11:

• Redox Reactions and Introduction to Electrochemistry

2013-N-12:

• Introduction to Colloids and Surface Chemistry

2013-N-13:

• Chemical Kinetics

2218(a)

THE UNIVERSITY OF SYDNEY <u>CHEM1612 - CHEMISTRY 1B (PHARMACY)</u> SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2013

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 16, 20 and 24 are for rough work only.

OFFICIAL USE ONLY

Short answer section

		Marks		
Page	Max	Gained		Marker
10	5			
11	6			
12	5			
13	5			
14	5			
15	5			
17	4			
18	9			
19	9			
21	7			
22	6			
23	4			
Total	70			
Check Total				

• Explain the following terms or concepts.	Marks
Third law of thermodynamics	3
Osmotic pressure	
Lewis base	
• The specific heat capacity of water at 0 °C is undefined. Explain why this is so.	2

Page Total:

• Consider th	ne following reaction:		Mark 3
	$2N_2O(g) + 2$	$3O_2(g) \rightarrow 4NO_2(g)$	5
Calculate 2	ΔG° for this reaction given th	ne following data.	
	$4NO(g) \rightarrow 2N_2O(g) + O_2$	$\Delta G^{\circ} = -139.56 \text{ kJ mol}^{-1}$	
	$2NO(g) + O_2(g) \rightarrow 2NO_2$	$\Delta G^{\circ} = -69.70 \text{ kJ mol}^{-1}$	
		Answer:	
Calculate t	he molar solubility of silver	sulfide, Ag ₂ S, given that K_{sp} is 8×10^{-51}	
at 25 °C.			3
		[.	
		Answer:	

Ca O cc pr ar	alcium carbide, CaC_2 , reacts with water to produce a gas and a solution containing H ⁻ ions. A sample of CaC_2 was treated with excess water and the resulting gas was oblected in an evacuated 5.00 L glass bulb. At the completion of the reaction, the ressure inside the bulb was 1.00×10^5 Pa at a temperature of 26.8 °C. Calculate the nount (in mol) of the gas produced.	Marks 5
	Answer	
G	iven that the mass of the gas collected was 5.21 g, show that the molar mass of the mass of the molar	
Su re	uggest a molecular formula for the gas and write a balanced equation for the eaction that occurred.	

Marks • Methane, CH₄, reacts with hydrogen sulfide, H₂S, according the following 5 equilibrium: $CH_4(g) + 2H_2S(g) \iff CS_2(g) + 4H_2(g)$ In an experiment 1.00 mol of CH_4 , 2.00 mol of H_2S , 1.00 mol of CS_2 and 2.00 mol of H₂ are mixed in a 250 mL vessel at 960 °C. At this temperature, $K_c = 0.034$ (based on a standard state of $1 \mod L^{-1}$). Calculate the reaction quotient, Q, and hence predict in which direction the reaction will proceed to reach equilibrium? Explain your answer. Show that the system is at equilibrium when $[CH_4(g)] = 5.56$ M.

Marks • Isooctane, an important constituent of petrol, has a boiling point of 99.3 °C and a 2 standard enthalpy of vaporisation of 37.7 kJ mol⁻¹. What is ΔS° (in J K⁻¹ mol⁻¹) for the vaporisation of isooctane? Answer: • An aqueous solution with a volume of 10.0 mL contains 0.025 g of a purified protein 3 of unknown molecular weight. The osmotic pressure of the solution was measured in an osmometer to be 0.0036 atm at 20.0 °C. Assuming ideal behaviour and no dissociation of the protein, estimate its molar mass in $g \text{ mol}^{-1}$. Answer:

$N_{2}(g) + 3H_{2}(g) \iff 2NH_{3}(g)$ At 500 °C this reaction has a K_{c} of 6.0×10^{-2} . ΔH° for this reaction is -92 kJ mol^{-1} . Calculate the value of K_{c} at 200 °C. Answer: • Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_{2}H_{3}OH(1) + O_{2}(g) \rightarrow CH_{3}COOH(1) + H_{2}O(1)$ Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: $\frac{\Delta S^{\circ} (J K^{-1} mol^{-1})}{C_{2}H_{3}OH(1) - 161}$ $Data:$	$\begin{split} & N_2(g) + 3H_2(g) ~~ 2NH_3(g) \\ & \text{At 500 °C this reaction has a } K_c \text{ of } 6.0 \times 10^{-2}. \ \Delta H^\circ \text{ for this reaction is } -92 \text{ kJ mol}^{-1}. \\ & \text{Calculate the value of } K_c \text{ at } 200 ~~ \text{C}. \\ & \text{Answer:} \\ \hline & \text{Answer:} \\ \hline & \text{Ood wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is \\ & C_2H_3OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1) \\ & \text{Calculate } \Delta S^\circ \text{ for this reaction in J K}^{-1} \text{ mol}^{-1}. \\ \hline & Data: \\ \hline & \frac{\Delta S^\circ (J K^{-1} \text{ mol}^{-1})}{C_2H_3OH(1) & 161} \\ & O_2(g) & 205.0 \\ & CH_3COOH(1) & 160 \\ & H_2O(1) & 69.96 \\ \hline \end{array}$	Marks 3
At 500 °C this reaction has a K_c of 6.0×10^{-2} . ΔH^o for this reaction is -92 kJ mol^{-1} . Calculate the value of K_c at 200 °C. Answer: • Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_2H_5OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$ Calculate ΔS^o for this reaction in J K ⁻¹ mol ⁻¹ . Data:	At 500 °C this reaction has a K_c of 6.0×10^{-2} . ΔH° for this reaction is -92 kJ mol^{-1} . Calculate the value of K_c at 200 °C. Answer: • Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_2H_5OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$ Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: $\Delta S^\circ (J K^{-1} mol^{-1})$ $C_2H_5OH(1) = 161$ $O_2(g) = 205.0$ $CH_3COOH(1) = 160$ $H_2O(1) = 69.96$	c
Answer: • Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_2H_5OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$ Calculate ΔS^o for this reaction in J K ⁻¹ mol ⁻¹ . Data: ΔS^o (J K ⁻¹ mol ⁻¹) C_2H_5OH(1) 161 O_2(g) 205.0 CH_3COOH(1) 160	Answer: • Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_2H_3OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$ Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: ΔS° (J K ⁻¹ mol ⁻¹) $C_2H_3OH(1)$ 161 $O_2(g)$ 205.0 CH_3COOH(1) 160 H_2O(1) 69.96	
Answer: • Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_2H_5OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$ Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: ΔS° (J K ⁻¹ mol ⁻¹) $C_2H_5OH(1)$ $Data:$ ΔS° (J K ⁻¹ mol ⁻¹) $C_2H_5OH(1)$ $Data:$ $D_2(g)$ 205.0 $CH_3COOH(1)$ $H_0(1)$	$\begin{tabular}{ c c c c } \hline Answer: & \hline Answer: & \hline Cool wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is C_2H_5OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1) \\ \hline Calculate \Delta S^o \text{ for this reaction in J K}^{-1} \text{ mol}^{-1}. \\ \hline Data: & \hline \Delta S^o (J K^{-1} \text{ mol}^{-1}) \\ \hline C_2H_5OH(1) & 161 \\ \hline O_2(g) & 205.0 \\ \hline CH_3COOH(1) & 160 \\ \hline H_2O(1) & 69.96 \\ \hline \end{tabular}$	
• Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_2H_5OH(l) + O_2(g) \rightarrow CH_3COOH(l) + H_2O(l)$ Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: Data: $C_2H_5OH(l)$ 161 $O_2(g)$ 205.0 $CH_3COOH(l)$ 160 $H_2O(l)$ 60.06	• Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is $C_2H_5OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$ Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: ΔS° (J K ⁻¹ mol ⁻¹) $C_2H_5OH(1)$ 161 $O_2(g)$ 205.0 $CH_3COOH(1)$ 160 $H_2O(1)$ 69.96	
$C_{2}H_{5}OH(l) + O_{2}(g) \rightarrow CH_{3}COOH(l) + H_{2}O(l)$ Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: $\Delta S^{\circ} (J K^{-1} mol^{-1})$ $C_{2}H_{5}OH(l) \qquad 161$ $O_{2}(g) \qquad 205.0$ $CH_{3}COOH(l) \qquad 160$	$\begin{array}{c} C_2H_5OH(l) + O_2(g) \rightarrow CH_3COOH(l) + H_2O(l) \\ \\ \mbox{Calculate } \Delta S^\circ \mbox{ for this reaction in J K}^{-1} \mbox{ mol}^{-1}. \\ \\ \hline Data: \begin{tabular}{ c c c c c c } \hline \Delta S^\circ \mbox{ (J K}^{-1} \mbox{ mol}^{-1}) \\ \hline C_2H_5OH(l) & 161 \\ \hline O_2(g) & 205.0 \\ \hline CH_3COOH(l) & 160 \\ \hline H_2O(l) & 69.96 \\ \hline \end{array}$	2
Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: ΔS° (J K ⁻¹ mol ⁻¹) C ₂ H ₅ OH(l) 161 O ₂ (g) 205.0 CH ₃ COOH(l) 160 H O(t) 60.06	Calculate ΔS° for this reaction in J K ⁻¹ mol ⁻¹ . Data: $\Delta S^{\circ} (J K^{-1} mol^{-1})$ C ₂ H ₅ OH(l) 161 O ₂ (g) 205.0 CH ₃ COOH(l) 160 H ₂ O(l) 69.96	
Data: $\Delta S^{\circ} (J K^{-1} mol^{-1})$ $C_2H_5OH(l)$ 161 $O_2(g)$ 205.0 $CH_3COOH(l)$ 160	Data: $\Delta S^{\circ} (J K^{-1} mol^{-1})$ $C_2H_5OH(l)$ 161 $O_2(g)$ 205.0 $CH_3COOH(l)$ 160 $H_2O(l)$ 69.96	
$\begin{array}{ c c c c c }\hline C_2H_5OH(l) & 161 \\\hline O_2(g) & 205.0 \\\hline CH_3COOH(l) & 160 \\\hline H_1O(l) & 60.06 \\\hline \end{array}$	$\begin{array}{ c c c c c }\hline C_2H_5OH(l) & 161 \\\hline O_2(g) & 205.0 \\\hline CH_3COOH(l) & 160 \\\hline H_2O(l) & 69.96 \\\hline \end{array}$	
O2(g) 205.0 CH3COOH(l) 160	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
CH ₃ COOH(1) 160	CH ₃ COOH(l) 160 H ₂ O(l) 69.96	
	H ₂ O(l) 69.96	
H ₂ O(I) 69.96		

ased on a standard state of	1 M the va	nue of ΛG° for	or this reaction at 3	7 °C is
33 kJ mol^{-1} . Calculate the emperature.	value of the	e equilibrium	constant for the rea	action at this
		Answer:		
he following concentration	ns are typica	Answer:	ell.	
he following concentration	ns are typica	Answer: al in a living of 0.1 mM	P _i : 5 mM	
ne following concentration ATP: 5 mM nder these conditions, calculitting of ATP.	ns are typica ADP: culate the en	Answer: al in a living of 0.1 mM hergy per mol	ell. P _i : 5 mM e that is available f	rom the
he following concentration ATP: 5 mM nder these conditions, calcolitting of ATP.	ns are typica ADP: culate the en	Answer: al in a living of 0.1 mM hergy per mol	ell. P _i : 5 mM e that is available f	rom the
he following concentration ATP: 5 mM nder these conditions, calculitting of ATP.	ns are typica ADP: culate the en	Answer: al in a living of 0.1 mM hergy per mol	ell. P _i : 5 mM e that is available f	rom the
he following concentration ATP: 5 mM nder these conditions, calculitting of ATP.	ns are typica ADP: culate the en	Answer: Il in a living o 0.1 mM hergy per mol	ell. P _i : 5 mM e that is available f	rom the
he following concentration ATP: 5 mM nder these conditions, calcolitting of ATP.	ADP: culate the en	Answer: al in a living of 0.1 mM hergy per mol	eell. P _i : 5 mM e that is available f	rom the
he following concentration ATP: 5 mM nder these conditions, calc olitting of ATP.	ADP: culate the en	Answer: 1 in a living o 0.1 mM 1 ergy per mol	ell. P _i : 5 mM e that is available f	rom the

• Balance the following nuclear reactions	and name the decay process occurring.	Marks 6
Equation	Name of decay process	
$^{15}_{8}\text{O} \rightarrow ^{15}_{7}\text{N} +$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$^{40}_{19}\mathrm{K}$ + \longrightarrow $^{40}_{18}\mathrm{Ar}$		
• What amount of NaOH (in mol) needs to give a solution with a pH of 5.00? The	o be added to 250 mL of 0.10 M acetic acid to pK_a of acetic acid is 4.76.	3
	Answer:	

• Complete the following table.

,
Marks
9

Coordination compound	Oxidation number of transition metal	ele tr	Number of <i>d</i> ectrons around ansition metal	Arrangement of <i>d</i> electrons		
K ₂ [PtCl ₄]						
Na[MnO ₄]						
(NH ₄) ₂ [CoCl ₄]						
[Cr(NH ₃) ₅ (OH ₂)]Cl ₃						
Identify one paramagnetic and one diamagnetic species from the above table.						
Paramagnetic: Diamagnetic:						

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• What is the electrochemical potential of the Fe FeSO ₄ (0.010 M)	he following cell at 25 °C? (FeSO ₄ (0.100 M) Fe	Marks 3
	Answer:	_
• Calculate the mass of aluminium which ca electricity that is used to produce 1.00 kg	an be produced with the same quantity of of copper metal.	2
	Answer:	_
• Explain why Na(s) cannot be obtained by	the electrolysis of aqueous NaCl solutions.	2

• Give a brief definition or explanation of the following concepts in colloid science.	Marks 6
double layer	
counter ion	
isoelectric point	
zeta potential	
flocculation	
electrokinetic mobility	
	J

Marks

4

	$H_2SeO_3 + 6I^-$	+ $4\text{H}^+ \rightarrow \text{Se} +$	$2I_3^- + 3H_2O$						
Experiment	Initial [H ₂ SeO ₃] (mol L^{-1})	Initial [I ⁻] (mol L^{-1})	Initial $[H^+]$ (mol L^{-1})	Initial rate of increase of $[I_3^-]$ (mol L ⁻¹ s ⁻¹)					
1	0.100	0.100	0.100	1.000					
2	0.100	0.075	0.100	0.422					
3	0.075	0.100	0.100	0.750					
4	0.100	0.075	0.075	0.237					
etermine the	rate law for the react	tion.							
What is the val	ue of the rate consta	nt?							
What is the val	ue of the rate consta	nt?							
What is the val	ue of the rate consta	nt?							
Vhat is the val	ue of the rate consta	nt?							
Vhat is the val	ue of the rate consta	nt?							

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	М					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р	10 ¹²	tera	Т					

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^+(\mathrm{aq}) + 2\mathrm{e}^- \rightarrow \mathrm{H}_2(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$\operatorname{Fe}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \to \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Useful formulas						
Quantum Chemistry	Electrochemistry					
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$					
$\lambda = h/mv$	Moles of $e^- = It/F$					
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$					
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$					
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$					
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$					
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$					
Acids and Bases	Gas Laws					
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT					
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$					
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$					
Radioactivity	Kinetics					
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$					
$A = \lambda N$	$k = A e^{-Ea/RT}$					
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$					
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$					
Mathematics	Thermodynamics & Equilibrium					
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$					
$\ln x = 2.303 \log x$	$\Delta G^{\circ} = -RT \ln K$					
Area of circle = πr^2	$\Delta_{\rm univ}S^\circ = R\ln\!K$					
Surface area of sphere = $4\pi r^2$	$\ln \frac{K_2}{M} = \frac{-\Delta H^{\circ}}{(1 - \frac{1}{2})}$					
Volume of sphere = $\frac{4}{3} \pi r^3$	$K_1 = R T_2 T_1'$					
Miscellaneous	Colligative Properties & Solutions					
$A = -\log \frac{I}{I}$	$\Pi = cRT$					
I_0	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$					
$A = \varepsilon c l$	c = kp					
$E = -A \frac{e^2}{N_A}$	$\Delta T_{\rm f} = K_{\rm f} m$					
$2 \qquad 14\pi\varepsilon_0 r^{1/A}$	$\Delta T_{\rm b} = K_{\rm b} m$					

1	2	3	4	5	6	7	8	9	10	11	12	2	13	14	15	16	17	18
1 нудкоден Н 1.008																		2 нешим Не 4.003
3	4												5	6	7	8	9	10
Linhiom	BERYLLIUM												BORON	CARBON	NITROGEN	OXYGEN	F	Ne
6.941	9.012												10.81	12.01	14.01	16.00	19.00	20.18
11	12												13	14	15	16	17	18
Na	MAGNESIUM												ALUMINIUM	SILICON	PHOSPHORUS	SULFUR		Argon
22.99	24.31												26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20	21 SCANDIUM	22	23 VANADIUM	24	25 MANGANESE	26	27	28 NICKEL	29	3	0	31	32 GERMANIUM	33 ARSENIC	34 SELENIUM	35 BROMINE	36
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Z	n	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.	39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	4	8	49	50	51	52	53	54
Rominion	SRONHUM	YIRIOM	ZIRCONIUM	Noblem	MOLYBDENUM	Тс	Ru	Rhobitm	PALLADIUM	Ag	CADA	d	In	Sn	Sb	Те	I	XeNON
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112	.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	8	0	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	Талтации	TUNGSTEN W	RHENIUM	OSMIUM OS	Indium	PLATINUM Pt		H	URY Ø	THALLIUM TI	Pb	BISMUTH	POLONIUM	ASTATINE	RADON
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200	8 .59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88 RADIUM	89-103	B 104	105	106 SEABORGHIM	107	108	109	110	111 ROENTGENU	11	2		114 ELEBOVIUM		116		
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	C	n		Fl		Lv		
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[28	3]		[289]		[293]		
	5	7	58	59	60	61	62	63	64	1	65		66	67	68	69	70	71
LANTHANO	IDS LANTE	a	Ce	PRASEODYMIUM	NEODYMIUM	PROMETHIOM Pm	SAMARIUM	EUROPIUM	GADOLI	d	Tb	DYS	DV	НО	Er	Tm	YTTERBIUM	LUTETION
	138	8.91 1	40.12	140.91	144.24	[144.9]	150.4	151.90	5 157.	25 1	58.93	16	52.50	164.93	167.26	168.93	173.04	174.97
	8	9	90	91	92	93	94	95	96	5	97		98	99	100	101	102	103
ACTINOID	S ACTI		^{нопим} Th	PROTACTINIUM Pa	URANIUM URANIUM	NEPTUNIUM Nn		AMERICIU:		n BE	rkellium Rk	CALI	FORNIUM	EINSTEINIUM Es	FERMIUM Fm	MENDELEVIUM Md	NOBELIUM	LAWRENCIUM
	[22]	7 01 2	32.04	[231.0]	238.03	[237.0]	[239 1]	[243.1	1 [247		247 11	[2	52 11	[252 1]	[257 1]	[256 1]	[259 1]	[260 1]

PERIODIC TABLE OF THE ELEMENTS